Math 25
Fall 2017
Lecture 11

Open notes Quiz
Given

1) find d

$$
2,10,18,26, \ldots
$$

$d=8$
2) find a_{25}

$$
\begin{aligned}
a_{n} & =a_{1}+(n-1) d \\
a_{25} & =2+(25-1) 8 \\
& =2+200-8=194
\end{aligned}
$$

3) find S_{100}

$$
\begin{aligned}
& S_{n}=\frac{n}{2}\left[2 a_{1}+(n-1) d\right] \quad S_{100}=\frac{100}{2}[2(2)+(100-1) \cdot 8] \\
&=50[4+800-8] \\
&=50[796] \\
& S_{100}=39,800
\end{aligned}
$$

Binomial Expansion (Them)

$$
\begin{aligned}
& (a+b)^{0}=1 \\
& (a+b)^{1}=a+b \\
& (a+b)^{2}=a^{2}+2 a b+b^{2} \\
& (a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}
\end{aligned}
$$

Find $(a+b)^{n}$

$$
p a^{n} b^{0}+q a^{n-1} b^{1}+p a^{n-2} b^{2}+\cdots+a^{0} b^{n}
$$

Binomial coef.
${ }_{n} C_{r} \quad n$ items, choosing r of them (Different) order does not matter.

$$
\begin{aligned}
& { }_{n} C_{r}=\frac{n!}{r!\cdot(n-r)!} \quad 10 C_{7}=\frac{10!}{7!\cdot(10-7)!} \\
& { }_{n} C_{r}=\binom{n}{r} \\
& \begin{array}{l}
=\frac{10!}{7!\cdot 3!} \\
=\frac{10 \cdot 5 \cdot 8 \cdot 7!}{7!\cdot 5 \cdot 2 \cdot 1}
\end{array}
\end{aligned}
$$

find $\binom{8}{3}=8 C_{3}=\frac{8!}{3!\cdot(8-3)!}$

$$
=\frac{8 \cdot 7 \cdot 6 \cdot 5 t}{3 \cdot 2 \cdot 1 \cdot 5 t}=56
$$

$(a+b)^{n}=$

$$
\binom{n}{0} a^{n} b^{0}+\binom{n}{1} a^{n-1} b^{1}+\binom{n}{2} a^{n-2} b^{2}+\cdots
$$

$$
\binom{n}{n} a^{0} b^{n}
$$

Expand $(a+b)^{6}$

$$
\begin{array}{r}
=\binom{6}{0} a^{6} b^{0}+\binom{6}{1} a^{5} b^{1}+\binom{6}{2} a^{4} b^{2}+\binom{6}{3} a^{3} b^{3} \\
+\binom{6}{4} a^{2} b^{4}+\binom{6}{5} a^{1} b^{5}+\binom{6}{6} a^{0} b^{6} \\
= \\
1 a^{6}+6 a^{5} b+15 a^{4} b^{2}+20 a^{3} b^{3}+15 a^{2} b^{4} \\
\\
+6 a b^{5}+1 b^{6}
\end{array}
$$

Find the 6 th term of $(a+b)^{13}$

$$
\binom{13}{5} a^{8} b^{5}=1287 a^{8} b^{5}
$$

Find the Fth term of $\left(2 x+y^{3}\right)^{10}$ Let $a=2 x, b=y^{3}$, $\leftrightarrow=210 \cdot 2^{6} x^{6} y^{12}$

$$
\left.\begin{array}{rl}
(a+b)^{10} & \rightarrow\binom{10}{4} a^{6} b^{4} \\
& =210 \cdot(2 x)^{6} \cdot\left(y^{3}\right)^{4}=
\end{array}\right)=13440 x^{6} y^{2} \quad \$
$$

Find the middle term of the expansion of

$$
\left(3 x^{5}-\frac{2}{3} y^{10}\right)^{8}
$$

$(a+b)^{n}$ has $(n+1)$ terms.
9 terms

$$
\begin{align*}
& (a+b)^{0}=1 \\
& (a+b)^{1}=a+b \\
& (a+b)^{2}=a^{2}+2 a b+b^{2} \\
& (a+b)^{10} \rightarrow 11 \text { terms } \\
& (a+b)^{25} \rightarrow 26 \text { terms }
\end{align*}
$$ term 5 th term.

Find the middle term of the expansion of

$$
\begin{aligned}
& \left(3 x^{5}-\frac{2}{3} y^{10}\right)^{8} \\
& \begin{array}{c}
(a+b)^{8} \\
a=3 x^{5}, b=\frac{-2}{3} y^{10}
\end{array} \\
& =70 \cdot 3^{44} \cdot\left(x^{5}\right)^{4} \cdot \frac{(-2)^{4}}{3^{4}} \cdot\left(y^{10}\right)^{4}=70\left(3 x^{5}\right)^{4}\left(\frac{-2}{3} y^{10}\right)^{4} \\
& =16 x^{20} y^{40} b^{4} \\
& =1120 x^{20} y^{40}
\end{aligned}
$$

Infinite Geometric Series

$$
\begin{aligned}
& 10+5+\frac{5}{2}+\frac{5}{4}+\frac{5}{8}+\cdots \\
& a_{1}=10, r=\frac{1}{2} \\
& S_{\infty}=\frac{a_{1}}{1-r} \quad S_{\infty}=\frac{10}{1-\frac{1}{2}}=\frac{10}{\frac{1}{2}} \\
& S_{\infty}=20
\end{aligned}
$$

$$
\begin{aligned}
& \text { Find } \begin{aligned}
& \sum_{n=1}^{\infty}\left(\frac{2}{3}\right)^{n+1} \\
&=\left(\frac{2}{3}\right)^{1+1}+\left(\frac{2}{3}\right)^{2+1}+\left(\frac{2}{3}\right)^{3+1}+\cdots \\
&=\left(\frac{2}{3}\right)^{2}+\left(\frac{2}{3}\right)^{3}+\left(\frac{2}{3}\right)^{4}+\cdots \\
&=\frac{4}{9}+\frac{8}{27}+\frac{16}{81}+\cdots \\
& \begin{aligned}
a_{1}=\frac{4}{9} & S_{\infty}=\frac{a_{1}}{1-r}
\end{aligned}=\frac{\frac{4}{9}}{1-2 / 3}=\frac{\frac{4}{9}}{\frac{1}{3}} \\
& r=\frac{2}{3}
\end{aligned}
\end{aligned}
$$

Functions
Input \rightarrow Domain
output \rightarrow Range
Any input values, we cannot have more than one output Values.

$$
\begin{aligned}
& f(x)=x^{2}-4 x \\
& f(0)=0^{2}-4(0)=0 \quad f(0)=0 \\
& f(-3)=(-3)^{2}-4(-3)=9+12=21 \quad f(-3)=21
\end{aligned}
$$

Some functions are one-to-one functions
Different input \rightarrow Different outputs

$$
\begin{array}{ll}
F(x)=x^{2} \quad & F(2)=4 \\
& F(-2)=4
\end{array} \Rightarrow \begin{aligned}
& \text { Not } \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \text { one-tonction -one }
\end{aligned}
$$

$$
\begin{array}{ll}
f(x)=x^{3} & f(2)=8 \\
& f(-2)=-8
\end{array}
$$

one-to-one function.

A function that is increasing all the way, or that is decreasing all the way is a one-to-one function.

Any one-to-one function has an inverse function

Does not mean reciprocal.

$$
\begin{aligned}
& f(x)=\frac{2}{3} x-2 \\
& y=\frac{2}{3} x-2
\end{aligned} f^{-1}(x)=\frac{3}{2} x+3
$$

$$
f(x)=\sqrt{x+4}
$$

x	y
-4	0
-3	1
0	2
5	3

How to find $f^{-1}(x)$?

1) Replace $f(x)$ with y

$$
f(x)=\sqrt{x+4}
$$

2) Switch $x \xi y$

$$
x=\sqrt{y+4}
$$

3) Solve for y

$$
\begin{aligned}
x^{2} & =y+4 \\
x^{2}-4 & =y
\end{aligned}
$$

4) Replace y with

$$
f^{-1}(x)
$$

$$
\begin{aligned}
f^{-1}(x) & =x^{2}-4 \\
x & \geq 0
\end{aligned}
$$

$$
f(x)=x^{2}+3, x \geq 0
$$

Graph $f(x)$
Discuss domain, range

Graph $f^{-1}(x)$
D: $[3, \infty)$
Discuss domain, range $R:[0, \infty)$

Exponential functions $\quad f(x)=b^{x}, b>0, b \neq 1$

$$
\begin{aligned}
& f(x)=2^{x} \\
& \begin{array}{l|ll|l}
x & y \\
0 & 1 \\
\hline 1 & 2 \\
\hline 2 & -1 & \frac{1}{2} \\
\hline 3 & 8 & -2 & \frac{1}{4} \\
\hline-3 & \frac{1}{8} \\
x \rightarrow \infty \\
y \rightarrow \infty
\end{array} \quad x \rightarrow-\infty \\
& \\
& \hline
\end{aligned}
$$

Graph $f(x)=3^{x}+1$

Graphs of $f(x) \dot{\varepsilon}, f^{-1}(x)$ are symmetric with respect to the line $\quad y=x$

Exponential Equations
If $b^{x}=b^{y}, b>0$, and $b \neq 1$, then $x=y$.
Solve $\quad e^{3 x-1}=32$

$$
\begin{array}{r}
2^{3 x-1}=2^{5} \quad 3 x-1=5 \\
x=2
\end{array}
$$

Solve $25^{3 x+4}=125^{x-5}$

$$
\begin{aligned}
& \left(5^{2}\right)^{3 x+4}=\left(5^{3}\right)^{x-5} \\
& 5^{2(3 x+4)}=5^{3(x-5)} \quad\left\{\begin{array}{c}
2(3 x+4)=3(x-5) \\
\left\{\frac{-23}{3}\right\} \\
\begin{array}{l}
6 x+8=3 x-15 \\
3 x=-23 \\
x=-23 / 3
\end{array}
\end{array}\right. \\
& x=-23 / 3
\end{aligned}
$$

Solve $\quad 3^{x} \cdot 3^{x-2}=\frac{1}{27}$

$$
3^{x+x-2}=\frac{1}{3^{3}} \quad 3^{2 x-2}=3^{-3}
$$

Solve

$$
2 x-2=-3
$$

$$
\left\{\frac{-1}{2}\right\}
$$

$$
\begin{array}{lr}
7^{2 x-3}=\left(\frac{1}{49}\right)^{x+1} & 2 x=-1 \\
7^{2 x-3}=\left(7^{-2}\right)^{x+1} & 2 x-3=-2(x+1) \\
7^{2 x-3}=7^{-2(x+1)} & \vdots \\
x=\frac{1}{4}\{1 / 4\}
\end{array}
$$

The inverse of exponential functions are logarithmic functions.

$$
\begin{aligned}
& f(x)=b^{x}, b>0, b \neq 1 \\
& F^{-1}(x)=\log _{b} x \quad, x>0 \\
& F(x)=2^{x} \quad f^{-1}(x)=\log _{2} x \quad \longrightarrow b=10
\end{aligned}
$$

On Your Call. $\log \rightarrow$ Common $\log \longrightarrow b=e$ $1 n \rightarrow$ Natural $\xrightarrow[\log]{ }$
find $\log 10=1$
find $\ln 25 \approx 3.22$
Sind $\frac{\log 12}{\log 2} \approx 3.58$
find $\frac{\ln 12}{\ln 2} \approx 3.58$
when Solving $b^{x}=y$

$$
\begin{aligned}
& \text { Exponent }=\frac{\log \text { RUS }}{\log \text { base }} \\
& 3^{x}=200 \\
& \begin{array}{ll}
x=\frac{\log 200}{\log 3} & \begin{array}{c}
x \approx 4.82 \\
\text { Rounded to } \\
\text { 2-decimal }
\end{array} \\
5^{x-2}=2017 & x-2=\frac{\log 2017}{\log 5} \\
\text { Exponent }=\frac{\log \text { RUS }}{\log \text { Base }} & x=\frac{x=6.33}{\log 2017} \\
\log 5
\end{array}+2
\end{aligned}
$$

Solve $7^{2 x+5}=2345$

$$
\begin{array}{rc}
2 x+5=\frac{\log 2345}{\log 7} & 2 x=\frac{\log 2345}{\log 7}-5 \\
& x=\frac{1}{2}\left[\frac{\log 2345}{\log 7}-5\right] \\
& x \approx-.51
\end{array}
$$

Graphing $f(x)=\log _{b} x, \quad x>0$

$$
f(x)=\log _{b} x \Rightarrow y=\log _{b} x \Leftrightarrow x=b^{y}
$$

Graph $f(x)=\log _{3} x \Leftrightarrow x=3^{y}$

$$
\begin{array}{c|cc|c}
x & y & x & y \\
\hline 1 & 0 & 1 / 3 & -1 \\
\hline 3 & 7 & & 1 / 9
\end{array}-2
$$

Geraph $f(x)=\log _{2}(x-1) \Leftrightarrow x-1=2^{y}$

x	y
2	0
3	1
5	2

2	
x	y
$1+\frac{1}{2}$	-1
$1+\frac{1}{4}$	-2

Geraph $f(x)=\log _{4}(x+2) \Leftrightarrow x+2=4^{y}$

$$
\begin{array}{c|cc|c}
x & y & & x \\
\hline-1 & 0 & & \begin{array}{l}
-2+\frac{1}{4} \\
\hline 2
\end{array} \\
\hline & 1 & -1 \\
\hline 14 & 2 & \begin{array}{c}
-2+\frac{1}{16} \\
x \rightarrow-2
\end{array} & -2 \\
& & & \\
x \rightarrow-2
\end{array}
$$

Solving Simple logarithmic equations

$$
\begin{array}{rl}
5=\log _{2}(x-3) \Leftrightarrow x-3 & =2^{5} \\
x-3 & =32 \\
x & x=35 \quad\{35\} \\
2=\log _{5}(3 x-1) \Leftrightarrow 5^{2} & =3 x-1 \\
\left\{\frac{26}{3}\right\} & 25=3 x-1 \\
26 & =3 x \quad x=\frac{26}{3}
\end{array}
$$

Solve $\quad \log _{2}\left(x^{2}-4 x\right)=5$

$$
\begin{aligned}
& x^{2}-4 x=2^{5} \\
& x^{2}-4 x-32=0 \\
& (x-8)(x+4)=0 \\
& \frac{b}{x=8} \quad \begin{array}{l}
x=-4
\end{array}\{8,-4\}
\end{aligned}
$$

More practice with M.I.
Mathematical Induction
Prove by M.I. that

$$
1+2+2^{2}+2^{3}+\cdots \cdot+2^{n-1}=2^{n}-1
$$

$a_{n}=n$th term is 2^{n-1}

$$
\begin{array}{rl}
a_{n+1}=(n+1) \text { th term } & \text { is } e^{n+1-1}=2^{n} \\
n=1 & 1 H S \\
n=2 & 1+2=2^{2}-1=2-1=1 / \\
n=3 & 1+2+2^{2}=2^{3}-1=8-1=3 \checkmark
\end{array}
$$

Assume it works for $n=k$

$$
1+2+2^{2}+2^{3}+\cdots \cdot+2^{k-1}=2^{k}-1
$$

Add the next term to both Sides

$$
1+2+2^{2}+2^{3}+\cdots+\cdot+2^{k-1}+2^{k}=2^{k}-1+2^{k}
$$

How terms on the $=2 \cdot 2^{k}-1$

$$
\begin{aligned}
\text { LIS ? }(k+1) & \\
\text { terms } & =2^{k+1}-1
\end{aligned}
$$

Prove by M.I.

$$
\begin{aligned}
& 1 \cdot 2+2 \cdot 3+3 \cdot 4+\cdots+n(n+1)=\frac{n(n+1)(n+2)}{3} \\
& n=1 \quad \begin{array}{l}
\text { LH } \\
1 \cdot 2
\end{array} \\
& n=2 \quad 1 \cdot 2+2 \cdot 3=\frac{2(3)(4)}{3} \\
& \begin{array}{c}
2+6 \\
8
\end{array}=8 \mathrm{l}=\frac{(k+1)(k+1+1)(k+1+2)}{3}
\end{aligned}
$$

Assume it works for $n=k$

$$
1 \cdot 2+2 \cdot 3+3 \cdot 4+4 \cdot 5+\cdots+k(k+1)=\frac{k(k+1)(k+2)}{3}
$$

Add the next term to both Sides

$$
\begin{array}{r}
1 \cdot 2+2 \cdot 3+3 \cdot 4+\cdots+k(k+1)+(k+1)(k+2)= \\
\frac{k(k+1)(k+2)}{3}+\frac{(k+1)(k+2) \cdot 3}{3}
\end{array}
$$

on the LHS, We have

$$
(k+1) \text { terms }=\frac{(k+1)(k+1+1)(k+1+2)}{3}
$$

Open -notes Quiz
Consider $3,6,12,24, \ldots$
find

1) r
2) a_{10}
3) S_{10}
